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I. INTRODUCTION 

 

 Labour productivity is a relationship between production and the factors 

of production (Freeman, 2008). Basically, labour productivity is equal to the ratio 

between a volume measure of output (gross domestic product (GDP) or gross 

value added) and a measure of input use (total number of hours worked or total 

employment) (Freeman, 2008).   

More specifically, labour productivity measures the amount of real GDP 

produced by an hour of labour. Real GDP grows when aggregate working hours 

and labour productivity grow, assuming ceteris paribus. 1 

 According to the neoclassical models of growth (such as the Solow 

model), labour productivity growth is mainly explained by progress in science 

and technology (Kaldor, 1966). This fact helps us to better understand Verdoorn’s 

law. Verdoorn’s law states that there is a linear relationship between growth in 

output and growth in productivity in the long run (Verdoorn, 1949; Kaldor, 1966). 

This relationship can be explained by the theory of cumulative causation. 

According to this theory, it is primarily growth in effective demand that 

stimulates technological growth through increasing division of labour potential 

and through learning-by-doing. The resulting labour productivity increase 

stimulates higher outputs through the extension of existing markets and the 

opening up of new markets. This suggests that labour productivity gains and 

growth in output comprise a mutually reinforcing mechanism (Kaldor, 1966; 

Schmookler, 1966; McCombie, 2003; Van Geenhuizen, 2009).2 
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To a great extent Norway managed to mitigate the global stagflation of 

the 1970s resulting from the global oil crisis through utilizing revenues from oil 

exports. Consequently, Norway had higher economic growth and a lower 

unemployment rate compared to most of the other Western countries suffering 

from the 1970s crisis. However, since Norwegian firms failed to adapt to markets, 

Norwegian labour productivity lagged behind the changes in international 

markets. This phenomenon, alongside huge growth in oil revenue (from 1973 to 

the end of 1985), made a significant contribution to the deindustrialization of 

Norway (Grytten, 2008). Thus, compared to the 1948-1970 period, labour 

productivity growth in Norway was generally low and variable from the mid-

1970s until the late 1980s (Hagelund, 2009). Figure 1 displays the changes in 

annual labour productivity growth in Norway over the last three decades (1971-

2011). As figure 1 suggests, it does not appear that the mean level of labour 

productivity growth in the 1990s was higher than the mean rate of growth in the 

1970s and 1980s (although possibly the variance of the growth in the 1990s was 

lower). Moreover, the level of growth in the 2000s is not greater than the mean 

level of growth in the 1990s: it only seems to be greater than the level of growth 

in the final two years of the 1990s. There seems to be a change (a fall in the 

growth rate) in the middle of the 2000s, before a slight recovery at the end of the 

period under consideration (1971-2011). The 2007-2009 financial and economic 

crisis in Norway, which resulted from the banking crisis, caused an even greater 

fall in labour productivity growth, culminating in it reaching its lowest point in 

the previous three decades in 2008.3  Indeed, a fall in oil revenue and non-oil 

sector stagnation resulting from the crisis led to a lower output growth and lower 

labour productivity growth (Hagelund, 2009). After 2008 labour productivity 

                                                           
Press, Cambridge, Massachussets 1966)181-204 

<http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8326359 > 

accessed 18 November 2013; JP Verdoorn, ‘On the Factors Determining the Growth of Labour 

Productivity’ (1949) (in L. Pasinetti (ed.). Italian Economic Papers 59, Vol. II, Oxford: Oxford 

University Press 1993) 3-10 ; JSL McCombie , M Pugno, B Soro, ‘Introduction’ (In MP 

McCombie,  B Soro (eds), Productivity Growth and Economic Performance, Palgrave 

Macmillan, London 2002) 1-27; M Van Geenhuizen , DM Trzmielak , DV Gibson, M Urbaniak, 

Value-Added Partnering and Innovation in a Changing World (Purdue University Press 2009) 

358-362 <http://www.thepress.purdue.edu/titles/format/9781557535139> accessed 18 

November 2013;  C Kennedy ’Induced bias in innovation and the theory of distribution’ (1964) 

in Economic Journal, Vol. 74, 541–547 <http://www.jstor.org/stable/2228295?origin=JSTOR-

below-page > accessed 18 November 2013; S Scarpetta, T Tressel, ‘Boosting Productivity via 

Innovation and Adoption of New Technologies: Any Role for Labour Market Institutions?’(2004) 

World Bank Policy Research Working Paper, no. 3273 

<http://ideas.repec.org/p/wbk/wbrwps/3273.html> accessed 18 November 2013; R Vergeer, A 

Kleinknecht, ‘Jobs versus Productivity? The causal link from wages to labour productivity 

growth’ (2007) TU Delft, The Netherlands, 2-6 

<http://www.fep.up.pt/conferencias/eaepe2007/Papers%20and%20abstracts_CD/Vergeer.pdf > 

accessed 18 November 2013. 
3  Similar to Norway, labour productivity growth appeared to fall in some other industrial 

European Union (EU) and non-EU countries before the 2007-2009 financial and economic crisis 

took place (Appendix A); Therefore, this phenomenon is not specific to Norway. It seems more 

general rather than being a consequence of the global financial and economic crisis.    
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growth in Norway started to increase. The Norwegian economy also started to 

recover in 2010 (IMF, 2012). 4 

Limited access to funds and a decrease in investments as a result of the 

financial and economic crisis could lead to a decline in research funding which, 

consequently, could slow down technological development and labour 

productivity growth in the longer term (Hagelund, 2009). Furthermore, based on 

Verdoorn’s law, the reduced output resulting from the economic crisis could 

cause a decrease in labour productivity growth. From the perspective of the 2007-

2009 financial and economic crisis in Norway, it is interesting to forecast 

Norwegian labour productivity growth for the coming decade. 5 

 

Figure 1. Labour productivity growth time series plot in Norway, 1971-

2011 

 
 Source: Data is extracted from OECD statistics <http:// stats.oecd.org> accessed 18 

November 2013. 
 

Considering the aforementioned facts, this paper focuses on forecasting 

labour productivity growth in Norway for the period 2012-2021 through an 

autoregressive integrated moving average (ARIMA) model using its successive 

values between 1971 and 2011.  The Box-Jenkins methodology is applied to 

select the appropriate ARIMA model.  After identifying the model and 

forecasting Norwegian labour productivity growth, this paper discusses the 

                                                           
4 Ola Grytten, ‘The Economic History of Norway’ (2008) EH.Net Encyclopedia, edited by Robert 

Whaples. March 16, 2008   <http://eh.net/encyclopedia/article/grytten.norway> accessed 18 

November 2013; K Hagelund, ‘Productivity growth in Norway 1948-2008’ (2009) Special 

adviser, Economics Department, Norges Bank, Economic bulletin 2, 4-15 <http://www.norges-

bank.no/Upload/77502/EN/Hele%20BUL.pdf> accessed 18 November 2013; IMF Executive 

Board Concludes 2011 Article IV Consultation with Norway, Public Information Notice (PIN) 

No. 12/9, February 2, 2012 <http://www.imf.org/external/np/sec/pn/2012/pn1209.htm>  accessed 

18 November 2013. 
5 Hagelund (n 4). 
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selected model. Moreover, it briefly interprets the forecast from an economic 

perspective. The paper is organized as follows. Section 2 introduces ARIMA 

models. Section 3 presents the Box-Jenkins methodology. In section 4, the model 

and the results are obtained. Section 5 discusses the model and the results and 

presents a conclusion. 

 

 

II. ARIMA MODELS 

 

Since labour productivity growth data has a time-series nature, in order 

to model it as a function of its past values a pattern is identified with the 

assumption that this pattern will persist in the future. In order to identify patterns 

of the series and forecast future points in it, an autoregressive integrated moving 

average model (ARIMA) is fitted to the data in this paper. 

Before introducing ARIMA models, it is necessary to briefly present its 

two constituents, namely autoregressive models and moving average models 

(Hyndman and Athanasopoulos, 2012). In an autoregressive model, the variable 

of interest is forecasted using a linear combination of past values of the variable. 

Thus, an autoregressive model of order p can be written as: yt=c+φ1yt-1+ φ2yt-

2+…….+ φpyt-p+et, where et is white noise. 6  This is similar to a multiple 

regression but lagged values of yt is considered as predictors and c is considered 

as an intercept. An autoregressive model is referred to as an AR (P) model. For 

an AR (1) model, yt is equivalent to White Noise (WN) when φ1=0.  yt is 

equivalent to a Random Walk (RW) without drift when φ1=1 and c=0. yt is 

equivalent to a Random Walk (RW) with drift when  φ1=1 and c0. When φ1  0 

and c=0, yt tends to fluctuate between positive and negative values. 

Autoregressive models basically apply to stationary data. This being the case, it 

is necessary to impose some constraints on the values of the parameters. For 

instance, for an AR (1) model: -1<φ1<1 and for an AR (2) model: -1<φ2<1, φ1+ 

φ2<1, φ2- φ1<1 (Hyndman and Athanasopoulos, 2012). 

 A moving average model is the second constituent of ARIMA models. A 

moving average model uses past forecast errors in a regression-like model instead 

of using past values of the forecast variable in a regression. A moving average 

model of order q can be written as yt= c+et+θ1et-1+ θ2et-2+…….+ θqet-q, where et 

is the white noise and c is considered an intercept. 

A moving average model is referred as an MA (q) model. It is possible to write 

any stationary AR (p) model as an MA (∞) model.7 It is important to mention that 

the reverse result holds if some constraints on the MA parameters are imposed. 

                                                           
6 A white noise process has zero mean, constant variance, and it is uncorrelated in time. As its 

name suggests, white noise has a power spectrum which is uniformly spread across all allowable 

frequencies. 
7 For example, using repeated substitution, it can be demonstrated for an AR (1) model: yt=φ1yt-

1+et=φ1 (φ1yt-2+et-1) +et=φ1
2yt-2+φ 1et-1+et= φ1

3yt-3+ φ2 1et-2+ φ 1et-1+ et etc. Provided -1< φ 1<1, the 

value of φk
1 will get smaller as k gets larger. Then, eventually, MA (∞) process is obtained: yt=et+ 

φ 1et-1+ φ2 1et-2+ φ3 1et-3+……. 
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When any MA (q) process can be written as an AR (∞) process, the MA model is 

called “invertible”. Invertibility constraints are similar to stationarity constraints. 

For example, for an MA (1) model: -1<θ1<1 and for a MA (2) model: -1<θ2<1, 

θ2+θ1 > -1, θ1- θ2<1 (Hyndman and Athanasopoulos, 2012). 

If an autoregressive model and a moving average model are combined with 

differencing, a non-seasonal ARIMA model is obtained (Hyndman and 

Athanasopoulos, 2012). ARIMA is an acronym for Autoregressive Integrated 

Moving Average model (“integration” in this context is the reverse of 

differencing). 

 The ARIMA model can be written as: t=c+φ1t-1+……+φpt-p+θ1et-1+……+ 

θqet-q+et  (1), where t is the differenced series (it may have been differenced more 

than once), et is the white noise and c is considered an intercept . The predictors 

on the right hand side include both lagged values of yt and lagged errors. This is 

called an ARIMA (p, d, q) model, where 

p=an order of the autoregressive part 

d=a degree of first differencing involved 

q=an order of the moving average part        

The same stationarity and invertibility conditions that are used for autoregressive 

and moving average models apply to the ARIMA model. 

With the backshift notation8, the equation (2.1) can be written as: 

(1-φ1B-…….-φpB
p)(1-B)dyt=c+(1+θ1B+…….+ θqB

q)et        (2) 

                                                                          

    AR(p)                  d differences               MA(q) 

 

Special cases of the ARIMA model are shown in the following table: 

 

Table 1. Special cases of the ARIMA model 

 

White noise                                     Random walk 

without drift         

Random walk with 

drift               

Autoregression   Moving 

Average                            

ARIMA 

(0,0, 0) 

ARIMA (0, 1, 0) with 

no constant   

 

ARIMA (0, 1, 0) with 

a constant 

 

ARIMA (p, 0,0) ARIMA 

(0,0, q) 

 Source: Hyndman, G Athanasopoulos, Forecasting: principles and practice (An online 

textbook, Monash University 2012) Section 8: ARIMA models, Non-seasonal ARIMA models < 

https://www.otexts.org/fpp/8/5 > accessed 18 November 2013. 
 

                                                           
8 The backward shift operator B (backshift notation), operating on yt, has the effect of shifting the 

data back one period: Byt=yt-1. Two applications of B to yt shifts the data back two periods: 

B(Byt)=B2yt=yt-2. The backward shift operator is convenient for describing the process of 

differencing. A first difference can be written as t=yt-yt-1=yt-Byt=(1-B)yt. In general, a dth-order 

difference can be written as (1-B)dyt. 
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 ARIMA models are defined for stationary time series. The Augmented 

Dickey–Fuller (ADF) test and the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) 

test are two popular tests which evaluate the stationarity of time series. ADF test 

tests the null hypothesis of a unit root in a time series sample against the 

alternative of stationarity of the time series. The KPSS test tests the null 

hypothesis that a time series is level or trend stationary against the alternative 

hypothesis that it is a non-stationary unit-root process (Hyndman and 

Athanasopoulos, 2012).    

Once the model order (the values of p,d, and q) has been indentified, the 

parameters including c, φ1,…… φp, θ1,………, θq need to be estimated. A 

maximum likelihood estimation (MLE) is used to estimate ARIMA models in R 

program. This technique finds the values of the parameters which maximize the 

likelihood of obtaining data that have been observed. For ARIMA models, MLE 

is very similar to the least squares estimation that would be obtained by 

minimizing 2
t. In practice, R reports the value of the log likelihood of the data 

which is the logarithm of the probability of the observed data coming from the 

estimated model.  Thus, for given values of p, d and q, R tries to maximize the 

log-likelihood of the data when finding parameter estimates (Hyndman and 

Athanasopoulos, 2012). 

 Akaike’s Information Criterion (AIC) is useful to determine the order of 

an ARIMA model. It can be written as AIC= -2log (L) + 2(p+q+k+1), where L is 

the likelihood of the data, K=1 if c0 and k=0 if c=0. The last term in parentheses 

is the number of parameters in the model (including σ2, the variance of the 

residuals). For ARIMA models, the corrected AIC can be written as AICc=AIC+ 

and the Bayesian Information Criterion can be written as BIC=AIC + log (T) 

(p+q+k-1), where T is the number of time periods. Better models are obtained by 

minimizing either the AIC, AICc, or BIC (Hyndman and Athanasopoulos, 2012). 

It is important to note that AICc is recommended to be used as the primary 

criterion in selecting the orders of an ARIMA model (Burnham & Anderson, 

2004; Brockwell & Davis, 1991). 

The point forecast, T+h|T, is defined as the forecast of T+h made at time T. Point 

forecasts can be calculated using the following three steps: 

1 – Expanding the ARIMA equation so that yt is on the left hand side and all other 

terms are on the right. 

2 – Rewriting the equation by replacing t by T+h. 

3 – Replacing future observations on the right hand side of the equation by their 

forecasts, future errors by zero, and past errors by the corresponding residuals. 

Beginning with h=1, these steps are then repeated for h=2,3,… until all forecasts 

have been calculated (Hyndman and Athanasopoulos, 2012). 

ARIMA forecast intervals require far more complex calculations than 

point forecasts. The first forecast interval is easily calculated. If  is the standard 

deviation of the residuals, then a 95% forecast interval is given by T+1|T  1.96 

(Hyndman and Athanasopoulos, 2012). The correctness of the forecast intervals 

for ARIMA models relies on assumptions that the residuals of a fitted ARIMA 

model are uncorrelated and normally distributed (Hyndman and Athanasopoulos, 

2012). 
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The forecast intervals from ARIMA models increase as the forecast horizon 

increases. The behaviour of the forecast intervals is mainly affected by its 

stationarity. For stationary models (with d=0), they initially increase and, 

accordingly, they will converge in the long term. For non-stationary models (d 

>0), the forecast intervals will continue growing in the long term (Hyndman and 

Athanasopoulos, 2012). 9 

 

 

III. METHODOLOGY 

 

The R programming language (“forecast” package) is used to fit an 

ARIMA model to time series data and to do the forecasting. 10  Box-Jenkins 

methodology is applied to select the appropriate ARIMA model and forecast the 

time series. The Box-Jenkins methodology is capable of identifying the correct 

model out of a large class of models through a systematic approach. It employs 

both statistical tests for evaluating the model and statistical measures of forecast 

uncertainty. This methodology is implemented through the following steps 

(Hyndman and Athanasopoulos, 2012): 

1. The data is plotted, any unusual observations are identified, and patterns are 

evaluated. 

2. If it is necessary, the data are transformed using a Box-Cox transformation11 

to stabilize the variance and obtain normal distribution.12 

3. The stationarity of data is assessed through Augmented Dickey–Fuller (ADF) 

and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests. If the data are non-

stationary, the first differences of data are taken until data are stationary. 

4. The Autocorrelation function (ACF) and partial Autocorrelation function 

(PACF) 13  plot of the data (or differenced data) are examined to determine 

                                                           
9  KP Burnham, DR Anderson, Model Selection and Multimodel Inference: A Practical 

Information-Theoretic Approach (2nd ed. Springer-Verlag 2002) Chapter 7 

<http://www.mun.ca/biology/quant/ModelSelectionMultimodelInference.pdf > accessed 18 

November 2013; RJ Hyndman, G Athanasopoulos, Forecasting: principles and practice (An 

online textbook, Monash University 2012) Section 8: ARIMA models <http://otexts.com/fpp> 

accessed 18 November 2013. 
10 The R Project for Statistical Computing <http://www.r-project.org/> accessed 18 November 

2013.   
11 The Box-Cox transformation transforms non-normally distributed data to a set of data that has 

approximately normal distribution using BoxCox() function in R. The Box-Cox transformation 

is defined as: if λ is not equal to 0, then  data(λ)=  and if λ is equal to 0, then data(λ)=log(data). 

The transformation parameter λ is estimated using automatic selection of Box Cox transformation 

parameter (BoxCox.lambda () function in R). 
12  GEP Box, DR Cox, ‘An analysis of transformations’ (1964) (B) JRSS 26, 211-246 

<http://fisher.osu.edu/~schroeder.9/AMIS900/Box1964.pdf> accessed 18 November 2013. 
13 Autocorrelation is the linear dependence of a variable with itself at two points in time. For 

stationary processes, autocorrelation between any two observations only depends on the time lag 

h between them. Define Cov(yt, yt-h) = γh. Lag-h autocorrelation is given by ρh=Corr(yt,yt-h)=γh/γ0. 

The denominator γ0 is the lag 0 covariance that is the unconditional variance of the process.  

http://www.mun.ca/biology/quant/ModelSelectionMultimodelInference.pdf
http://otexts.com/fpp
http://www.r-project.org/
http://fisher.osu.edu/~schroeder.9/AMIS900/Box1964.pdf
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possible candidate models (e.g. to determine whether an AR (p) or MA (q) model 

is appropriate).     

5. Using information criteria either the AIC, AICc, or BIC, chosen candidate 

models are tried to select a better model. Subsequently, a Student’s t-test is used 

to test whether the coefficients of the selected model differ significantly from 

zero.14 If t-statistics indicates that any of the coefficients of the selected model 

fails to differ significantly from zero at the determined significance level (e.g. 

α=0.05), that coefficient is set to zero and, consequently, the selected model is 

refitted. 

6. Goodness of fit for the selected ARIMA model is checked through testing 

whether autocorrelation in the residuals is zero, testing the normality and 

homoscedasticity (constant variance) of residuals, and testing if the mean of 

residuals fluctuates around zero. It should be pointed out that obvious trends 

should be removed before normality is checked. 

Goodness of fit determines if the residuals look like white noise or not. If 

goodness of fit fails and the residuals do not look like white noise, the procedure 

resumes from step 4 to find a modified model. 

 7. Once goodness of fit for the selected model is checked and it is suggested that 

the residuals look like white noise, forecasts are calculated.15 

 

 

IV. THE MODEL AND THE RESULTS 
 

 The data is extracted from OECD Statistics.16 Annual growth in GDP per 

hour worked (known as labour productivity annual growth rate) in Norway from 

1971 to 2011 (figure 1) is the non-seasonal time series to which the ARIMA 

model is going to fit. 17 Labour productivity growth time series seems to follow 

                                                           
Correlation between two variables can result from a mutual linear dependence on other variables. 

Partial autocorrelation is the autocorrelation between yt and yt-h after removing any linear 

dependence on y1, y2, ..., yt-h+1. The partial lag-h autocorrelation is denoted φh,h. The use of these 

functions was introduced as part of the Box-Jenkins approach to time series modeling. By plotting 

the ACF, the appropriate lags q in MA (q) could be determined. Plotting PACF could help 

determine the appropriate lags p in an AR (p) model. Both functions can be used in an extended 

ARIMA (p, d, q) model to determine lags q and lags p. 
14 The null hypothesis that a coefficient of the selected model is zero is rejected if the absolute 

value of t-statistics of that coefficient (the ratio of estimated coefficient to its standard error) is 

greater than zα/2 (For larger sample sizes, the t-test procedure gives almost identical p-values as 

the Z-test procedure which is based on normal distribution approximation). In this case, a 

coefficient of the selected model differs significantly from zero. 
15 GEP Box, GM Jenkins, GC Reinsel, Time Series Analysis: Forecasting and Control (3rd ed. 

Englewood Cliffs, NJ: Prentice-Hall 1994) 32-33, 66, 68, 70-75, 188, 314-315, 547 

<http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470272848.html> accessed 18 

November 2013; Hyndman (n 9). 
16 Labour productivity growth data in Norway extracted in January 2013 from OECD.Stat <http:// 

stats.oecd.org/> accessed 18 November 2013.        
17 The data on labour productivity annual growth rate in Norway from 1971 till 2011 is available 

in Appendix B. 

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470272848.html
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a normal distribution 18  and as figure 1 indicates, it shows no evidence of 

changing variance. Consequently, it is not necessary to use a Box-Cox 

transformation.  In the next step, the stationarity of time series must be tested. 

The Norwegian labour productivity growth time series looks non-stationary as 

the series has a downward trend and it fluctuates up and down for long periods 

(figure 1). Based on the Augmented Dickey-Fuller (ADF) test, the null 

hypothesis of a unit root in labour productivity growth time series is failed to 

reject at the 5% significance level. In addition, the Kwiatkowski–Phillips–

Schmidt–Shin (KPSS) test indicates that the null hypothesis, that labour 

productivity growth time series is level stationary, is rejected in favour of an 

alternative hypothesis that it is a non-stationary unit root process at the 5% 

significance level. Subsequently, based on the ADF test and KPSS test at the 5% 

significance level, the labour productivity growth series is a non-stationary unit 

root process. Labour productivity growth series needs to be differenced in order 

to be stationary. Based on ADF and KPSS tests, the first difference of the labour 

productivity growth series is a stationary process at the 5% significance level 

(more details on this can be found in Appendix C). 

Therefore, the Norwegian labour productivity growth time series is difference 

stationary. It is integrated of order one (I(1)) and it has a unit root.19   

After having Norwegian labour productivity growth time series 

transformed into a stationary series using the differencing method, an appropriate 

ARIMA model is selected. 

First of all, the Autocorrelation Function (ACF) and Partial 

Autocorrelation Function (PACF) plot for the differenced labour productivity 

growth time series are examined. Figure 2 shows the time plot and ACF and 

PACF plots (lags 1-20) for the differenced Norwegian labour productivity growth 

time series.20 

 

 

                                                           
18 The Shapiro-Wilk normality test on labour productivity growth series indicates that the null 

hypothesis of normality is failed to reject at 5% significant level (p-value = 0.1557 > 0.05). 
19  JD Hamilton, Time Series Analysis (Princeton University Press New Jersey 1994) 514-528 

<http://press.princeton.edu/titles/5386.html> accessed 18 November 2013; A Coghlan, A Little 

Book of R For Time Series (Release 0.1. University College Cork, Cork, Ireland 2011) 13-65 

<http://stamash.org/hub/wp-content/uploads/2012/09/TimeSeries.pdf>  accessed 18 November 

2013; Hyndman (n 9); DA Dickey, WA Fuller WA, ‘Distribution of the estimators for 

autoregressive time series with a unit root’ (1979) Journal of the American Statistical Association 

74, 427–431 <http://www.deu.edu.tr/userweb/onder.hanedar/dosyalar/1979.pdf > accessed 18 

November 2013; SE Said, DA Dickey, ‘Testing for Unit Roots in Autoregressive-Moving Average 

Models of Unknown Order’ (1984) (3) Biometrika 71, 599-607. doi:10.1093/biomet/71.3.599 

<http://www.ssc.wisc.edu/~bhansen/718/SaidDickey1984.pdf> accessed 18 November 2013; D 

Kwiatkowski, PCB Phillips, P Schmidt, Y Shin, ‘Testing the Null Hypothesis of Stationarity 

against the Alternative of a Unit Root’ (1992) Journal of Econometrics 54, 159-178 

<http://www.ccee.edu.uy/ensenian/catmetec/material/KPSS.pdf > accessed 18 November 2013 
20 The values of autocorrelations and partial autocorrelations are presented in Appendix D.   

 

http://press.princeton.edu/titles/5386.html
http://stamash.org/hub/wp-content/uploads/2012/09/TimeSeries.pdf
http://www.deu.edu.tr/userweb/onder.hanedar/dosyalar/1979.pdf
http://www.ssc.wisc.edu/~bhansen/718/SaidDickey1984.pdf
http://www.ccee.edu.uy/ensenian/catmetec/material/KPSS.pdf
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Figure 2.  Time plot and ACF and PACF plots (lags 1-20) for the differenced 

Norwegian labour productivity growth time series 

 
 

 As figure 2 indicates, autocorrelations between lags 1-20 do not exceed 

the significant bounds. The ACF looks sinusoidal. Although the partial 

autocorrelations between lags 1-20 do not exceed the significant bounds, after 

the third lag (which is very close to the lower significance bound), they tail off 

to zero. As figure 2 shows, the differenced Norwegian labour productivity growth 

time series fluctuates around zero. This fact suggests that the constant term in 

ARIMA model is equal to zero.  Therefore, an initial candidate model is an 

ARIMA (3, 1, 0) without constant.   

 Candidate models include ARIMA (p, 1, q) models without constant, 

where p is between 0 and 3 inclusively, and q varies between 0 and 1 inclusively. 

21 The information criteria in Table 2 are used to find a better model. 

It is concluded that ARIMA (1, 1, 1) with no constant haa a relative preference 

over other models since it has smaller AICc. On the other hand, the auto. arima 

() function in the R program22 also identifies ARIMA (1,1,1) with no constant as 

an appropriate model.23 

Considering equation (2), ARIMA (1, 1, 1) with no constant can be written as 

follows: 

(1-ar1B)(1-B)yt=(1+ma1B)et 

(1-B- ar1B+ ar1B2)yt=(1+ma1B)et 

yt - yt-1- ar1yt-1+ar1yt-2=et+ ma1et-1 

The final model is: yt= (1+ ar1) yt-1- ar1yt-2+ ma1et-1+ et 

Note: ar1 is the first autoregressive coefficient and ma1 is the first moving 

average coefficient. 

                                                           
21  PJ Brockwell, RA Davis, Introduction to Time Series and Forecasting (Second edition, 

Springer -Verlag, New York 2002) 238-250, 273-320 <http://www.masys.url.tw/Download/2002-

Brockwell-Introduction%20Time%20Series%20and%20Forecasting.pdf> accessed 18 

November 2013; Coghlan (n 19); Hyndman (n 9). 
22  The auto.arima() function in R uses a variation of the Hyndman and Khandakar algorithm 

which combines unit root tests, minimization of the AICc and MLE to obtain an ARIMA model. 
23 Hyndman (n 9). 

 

http://www.masys.url.tw/Download/2002-Brockwell-Introduction%20Time%20Series%20and%20Forecasting.pdf
http://www.masys.url.tw/Download/2002-Brockwell-Introduction%20Time%20Series%20and%20Forecasting.pdf
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Table 2. Information criteria helping find an appropriate model 

 

 

   ARIMA  Model 

                              Information Criteria  

sigma^2 Log 

likelihood 

AIC AICc 

ARIMA (3, 1, 0) 2.21 -72.8 153.61    154.75    

ARIMA (2, 1, 0)                     2.411 -74.41 154.83    155.5    

ARIMA (1, 1, 0)                    2.549 -75.47 154.94    155.27    

ARIMA (0, 1, 0)                     2.564 -75.59 153.17    153.28    

ARIMA (0, 1, 1)                     2.531 -75.34 154.69    155.01    

ARIMA (1, 1, 1)                     2.26 -73.24 152.49    153.16    

ARIMA (2, 1, 1)                   2.146 -72.27 152.53    153.67    

ARIMA (3, 1, 1)                     2.091 -71.8 153.59    155.36    

 

The result of ARIMA (1, 1, 1) with no constant for Norwegian labour 

productivity growth time series is as follows: 

Series: Labourproduc11 

ARIMA (1, 1, 1)                     

                                       ar1                  ma1 

coefficient           0.5231       -0.8312 

standard error        0.2074             0.1328 

t-statistics              2.5222            -6.259 

p-value                  0.0117             < 0.01 

sigma^2 estimated as 2.26:  log likelihood=-73.24 

AIC=152.49   AICc=153.16   BIC=157.56 

 

The final model is: yt= (1.5231) yt-1- (0.5231) yt-2+ (-0.8312) et-1+ et, where yt is 

the Norwegian labour productivity growth time series in year t, and et is the white 

noise. 

 The result of ARIMA (1, 1, 1) with no constant model indicates that the 

first autoregressive coefficient (ar1) and the first moving average coefficient 

(ma1) differ significantly from zero at the 0.05 significance level since the 

absolute value of t-statistics (the ratio of estimated coefficient to its standard 

error) of the first autoregressive coefficient and the first moving average 

coefficient are greater than 1.96 (2.52 and 6.26 respectively)24.   

 After having the best model selected out of the candidate models and 

having the statistical significance of its coefficients tested, its goodness of fit is 

checked.   

                                                           
24 P-values from t-statistics are less than 0.05 (0.01 and < 0.01 respectively). 
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 In order to check that there is no autocorrelation in residuals, the Ljung-

Box test and the ACF plot of the residuals from the selected model are applied. 

The Ljung-Box test is a portmanteau test since it tests the overall randomness 

based on a number of lags instead of testing randomness at each distinct lag. The 

Ljung-Box test evaluates the null hypothesis that a series of residuals shows no 

autocorrelation for a fixed number of lags against the alternative that some 

autocorrelation coefficient is non-zero (Box, Jenkins, and Reinsel, 1994; Box and 

Pierce, 1970).25  The Ljung-Box test indicates that the null hypothesis of no 

autocorrelation in residuals from ARIMA (1, 1, 1) with no constant for lags 1 -20 

is failed to reject at the 0.05 significance level (p-value = 0.8241 > 0.05, and 

Q=12.4337 < X2
0.05, 18=28.87). In addition, the ACF plot of the residuals from the 

selected model for lags 1-20 shows all correlations are within the threshold limits 

(figure 3). This fact indicates that the residuals are behaving like white noise. 

According to its definition, a white noise process is uncorrelated in time. Based 

on the Ljung-Box test and ACF plot of the residuals, it is concluded that there is 

no evidence for non-zero autocorrelation in residuals of the fitted model at lags 

1-20.   

 

Figure 3.The ACF plot of the residuals from ARIMA (1, 1, 1) with no 

constant for lags 1-20 

 
 

 In order to check whether the residuals from ARIMA (1, 1, 1) with no 

constant have normal distribution, the Shapiro-Wilk normality test of residuals 

and normal probability plot of residuals are applied. The Shapiro-Wilk normality 

test tests the null hypothesis that the samples come from a normal distribution 

against the alternative hypothesis the samples do not come from a normal 

                                                           
25 Box (n 15); GEP Box, DA Pierce, ’Distribution of Residual Autocorrelations in Autoregressive-

Integrated Moving Average Time Series Models’ (1970) Journal of the American Statistical 

Association 65, 1509-1526 

< http://www.stat.purdue.edu/~mlevins/STAT598K_2012/Box_Pierce_1970.pdf > accessed 18 

November 2013. 

 

http://www.stat.purdue.edu/~mlevins/STAT598K_2012/Box_Pierce_1970.pdf
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distribution (Shapiro and Wilk, 1965).26 Based on the results of the Shapiro-Wilk 

normality test, the null hypothesis of normality of residuals is failed to reject at 

the 0.05 significance level (W is large and p-value = 0.1539 > 0.05). The normal 

probability plot evaluates whether the data is normally distributed through 

plotting the data against a sample from theoretical normal distribution so that the 

points should form an approximately straight line. The departure of points from 

the straight line suggests departure from normality (Chambers, Cleveland, 

Kleiner, and Tukey, 1983).27 The normal probability plot of residuals (figure 4) 

indicates that since most of points lie close to a straight line, the data is almost 

consistent with a sample from normal distribution. Therefore, based on Shapiro-

Wilk normality test and normal probability plot, it is reasonable to say that the 

residuals are approximately normally distributed. 

To check whether residuals from ARIMA (1, 1, 1) with no constant have constant 

variance, and their mean varies around zero, a time plot of standardized residuals 

from this model is used (figure 5). As figure 4.4 indicates, standardized residuals 

of the selected model seem to have approximately constant variance over time 

(homoscedasticity) although the size of fluctuations at some years is much bigger 

compared to others. Furthermore, standardized residuals fluctuate around zero. 

The goodness of fit evaluation suggests that the residuals from ARIMA (1, 1, 1) 

with no constant look like white noise.28 

 

Figure 4. Normal probability plot of the residuals from ARIMA (1, 1, 1) 

with no constant 

 

                                                           
26 SS Shapiro, MB Wilk, ’An analysis of variance test for normality (complete samples)’ (1965) 

(3-4) Biometrika 52, 591-611. doi:10.1093/biomet/52.3-4.591 

<http://sci2s.ugr.es/keel/pdf/algorithm/articulo/shapiro1965.pdf > accessed 18 November 2013. 
27  J Chambers, W Cleveland, B Kleiner , P Tukey, Graphical Methods for Data Analysis 

(Wadsworth & Brooks/Cole, Pacific Grove, CA 1983) <http://stat.bell-

labs.com/wsc/papersbooks.pdf>  accessed 18 November 2013. 
28 In addition to measures mentioned above, in Appendix E, fitted values of labour productivity 

growth versus observed values are shown graphically. 

 

http://sci2s.ugr.es/keel/pdf/algorithm/articulo/shapiro1965.pdf
http://stat.bell-labs.com/wsc/papersbooks.pdf
http://stat.bell-labs.com/wsc/papersbooks.pdf
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Figure 5. Time plot of standardized residuals from ARIMA (1, 1, 1) with no 

constant 

 

 
 

 After having goodness of fit checked, using estimated selected ARIMA 

model (ARIMA (1, 1, 1) with no constant) labour productivity growth in Norway 

for the next 10 years is predicted. In addition, 80% and 95% forecast intervals 

for these forecasts are obtained (Table 3). 

 

Table 3. Point forecasts and their 80% and 95% forecast intervals for 

labour productivity growth in Norway for the next 10 years using ARIMA 

(1, 1, 1) with no constant 

 

Year Point 

Forecast 

Lo 80           Hi 80              Lo 95              Hi 95 

 

2012 -0.2227 -2.1495 1.7040  -3.1695 2.7240 

2013 -0.0777 -2.4207 2.2653  -3.6610 3.5056 

2014 -0.0018 -2.5583 2.5546  -3.9115 3.9079 

2015  0.0379   -2.6594 2.7351  -4.0872   4.1630 

2016  0.0586    -2.7478 2.8651  -4.2335   4.3507 

2017  0.0695   -2.8305 2.9695  -4.3657   4.5047 

2018  0.0752   -2.9099 3.0602  -4.4901   4.6404 

2019  0.0781   -2.9868 3.1431  -4.6093   4.7656 

2020  0.0797    -3.0618   3.2211  -4.7248 4.8841 

2021  0.0805    -3.1349   3.2959  -4.8370 4.9980 

 

 Figure 6 displays the observed values of Norwegian time-series labour 

productivity growth in the period 1971-2011 (in-sample period) together with 

Norwegian time-series labour productivity growth forecasts and their 80% and 

95% forecast intervals for the next 10 years (out-of-sample period) using the 

selected ARIMA model. The forecasts for the period 2012-2021 are plotted as a 

blue line, the 80% forecast interval as an orange shaded area, and the 95% 

forecast interval as a yellow shaded area. 
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Figure 6. Observed values of Norwegian time-series labour productivity 

growth in the period 1971-2011 (in-sample period) together with its forecast 

time-series for the period 2012-2021 (out-of-sample period) using ARIMA 

(1, 1, 1) with no constant 

 

 
 

 As figure 6 shows, Norwegian labour productivity growth time series 

continues increasing very slowly and ultimately it goes to a non-zero constant in 

the forecast period (2012-2021) following its recovery after 2008.29 

 

 

DISCUSSION AND CONCLUSION 

 

Norwegian time-series labour productivity growth is difference 

stationary. It is integrated of order one (I (1)) and it has a unit root then. Through 

Box-Jenkins methodology, ARIMA model is fitted to Norwegian labour 

productivity growth time series. 

                                                           
29  Hamilton (n 19) 43-117, 514-528; Brockwell (n 21); C Kleiber , A Zeileis, Applied 

Econometrics with R (Springer -Verlag, New York 2008) 

<http://uosis.mif.vu.lt/~rlapinskas/2012-2013/Ekonometrija%203k/KleibZeil%20-

%20AER.pdf> accessed 18 November 2013; PSP Cowpertwait, AV Metcalfe, Introductory Time 

Series with R (Springer-Verlag, New York 2009)121-128, 137-140 

<http://www.springer.com/statistics/statistical+theory+and+methods/book/978-0-387-88697-8> 

accessed 18 November 2013; Coghlan (n 19); RH Shumway, DS Stoffer, Time Series Analysis 

and Its Applications: With R Examples (Springer Texts in Statistics 2010, 3rd ed. 2011) XII, 

chapter 3, 83-154 

<http://www.springer.com/statistics/statistical+theory+and+methods/book/978-0-387-36276-2> 

accessed 18 November 2013; Hyndman (n 9); H Akaike, ‘A new look at the statistical model 

identification’ (1974) (6) IEEE Transactions on Automatic Control 19, 716-723 

<http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1100705&abstractAccess=no&userTy

pe=inst> accessed 18 November 2013. 

 

 

 

http://uosis.mif.vu.lt/~rlapinskas/2012-2013/Ekonometrija%203k/KleibZeil%20-%20AER.pdf
http://uosis.mif.vu.lt/~rlapinskas/2012-2013/Ekonometrija%203k/KleibZeil%20-%20AER.pdf
http://www.springer.com/statistics/statistical+theory+and+methods/book/978-0-387-88697-8
http://www.springer.com/statistics/statistical+theory+and+methods/book/978-0-387-36276-2
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1100705&abstractAccess=no&userType=inst
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1100705&abstractAccess=no&userType=inst
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As AICs (preferred information criterion) indicates, ARIMA (1, 1, 1) with 

no constant is selected as an appropriate model among the candidates. The 

statistical significance test of coefficients of the selected model indicates that all 

coefficients are significant at the 5% level. The auto.arima() function in R also 

delivers exactly the same model. If BIC criterion which penalizes the number of 

parameters is used, ARIMA (0, 1, 0) with no constant (random walk without a 

drift) is obtained as an appropriate model. 

From statistical perspective, ARIMA (0, 1, 0) with no constant could be the 

second best model since it not only has the smallest BIC, but it has the second 

smallest AIC and AICc.  In Appendix F, the forecast for time-series labour 

productivity growth in Norway for the period 2012-2021 using ARIMA (0, 1, 0) 

with no constant (random walk without a drift) is displayed graphically. 

However, the random walk model has two obvious weaknesses: 1) The forecasts 

for future growth are all negative (It is equal to -0.5), which is not in agreement 

with the theory of economic growth through technological advance 2) The 

process is not stationary and confidence intervals for the growth rate become 

increasingly wide, which is not in accordance with the intuition that over time 

the labour productivity growth rate varies within fairly narrow bounds. 

Consequently, this random walk model is inappropriate from economic 

perspective. 

The goodness of fit of the selected model (ARIMA (1, 1, 1) with no 

constant) is checked by testing if autocorrelation in its residuals is zero, testing 

the normality and homoscedasticity of its residuals, and testing if the mean of 

residuals varies around zero. The Ljung-Box test indicates that the null 

hypothesis of no autocorrelation in residuals from ARIMA (1, 1, 1) with no 

constant for lags 1- 20 is failed to reject at the 5% significance level. The ACF 

plot of residuals for lags 1-20 shows that residuals are behaving like white noise. 

Therefore, it is concluded that there is no evidence for non-zero autocorrelation 

in residuals from the selected model at lags 1-20. The Shapiro-Wilk normality 

test of residuals from the selected model (at the 5% significance level) and normal 

probability plot of residuals show that it is plausible that the residuals are 

approximately normally distributed. The time plot of standardized residuals data 

suggests that residuals have approximately constant variance over time. In 

addition, standardized residuals fluctuate around zero (indicating that the mean 

of residuals varies around zero). As a result, it is concluded that ARIMA (1, 1, 1) 

with no constant is well fitted and provides an adequate predictive model for 

labour productivity growth, which probably cannot be modified further. In 

addition, the assumptions that the 80% and 95% forecast intervals were based on 

(that the residuals from the selected model are uncorrelated and normally 

distributed) are valid at the 0.05 significance level.   

Labour productivity growth is forecasted for the period 2012-2021 using 

ARIMA (1, 1, 1) with no constant. The constant c (intercept) has an important 

effect on the long-term forecasts obtained from the ARIMA models. If c=0 (zero 

intercept) and d=1 (series is non-stationary), the long-term forecasts will go to a 

non-zero constant (Hyndman and Athanasopoulos, 2012). 
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By estimating the forecast for labour productivity growth in Norway for the 

period 2012-2021 (figure 6) and also for the periods 2012-2031 and 2012-2041 

(displayed in 

Appendix G) using the selected model (ARIMA (1, 1, 1) with no constant), It is 

empirically proven that the long-term forecasts for non-stationary models with 

zero intercept will go to a non-zero constant as the forecast horizon increases. 

The forecast made using ARIMA (0, 1, 0) with no constant (displayed in 

Appendix F) also empirically approves this fact. 

For both ARIMA (1, 1, 1) with no constant and ARIMA (0, 1, 0) with no constant, 

forecast intervals increase as the forecast horizon increases. As a result, the fact 

that for non-stationary models the forecast intervals continue growing in the 

long-term is empirically proven. 

As discussed before, there seemed to be a change in the Norwegian labour 

productivity growth rate (a fall in the growth rate) in the middle of the 2000s, 

before a slight recovery at the end of the period under consideration (1971-2011) 

occurred. The 2007-2009 financial and economic crisis in Norway (which 

resulted from the banking crisis) caused an even greater drop in labour 

productivity growth to the extent that in 2008it reached its lowest point in the 

previous three decades. After 2008 labour productivity growth started increasing. 

Norwegian labour productivity growth continues increasing very slowly and 

ultimately it reaches a non-zero constant in the forecast period (2012-2021) and 

also over longer periods (2012-2031 and 2012-2041) following its recovery after 

2008.  A decrease in investment leads to slowed down technological development 

in the longer term in a knowledge-based economy like the Norwegian economy, 

which is characterised by complex links between service and manufacturing 

activities. Therefore, it might initially be concluded that slow technological 

development as a result of limited access to funds due to the 2007-2009 financial 

and economic crisis in Norway could explain a slowdown in the recovery of 

labour productivity growth in the forecast period (2012-2021) and over longer 

periods (2012-2031 and 2012-2041). Although the ARIMA (1, 1, 1) with no 

constant gives more sensible predictions than random walk without a drift 

(ARIMA (0, 1, 0) with no constant), this model also seems to be limited in being 

able to describe the data. Firstly, the short-term labour productivity growth rate 

is predicted to be less than 0.1%. This seems out of line with the data observed 

over the 41-year period as a whole and overly dependent on the data from the 

financial and economic crisis period. Also, the 95% confidence interval 2-3 years 

(points) after the last observation already covers the range of observations over 

the last 41 years, which suggests that picking a number randomly from this range 

would be just as good a method as using a time-series model. The reason for this 

almost certainly results from the fact that the crisis has changed the underlying 

process which the labour productivity growth rate followed in the immediately-

preceding period. Furthermore, the period immediately before the crisis also 

covers the technological revolution which can be considered as a contributing 

factor to labour productivity growth in Norway. Therefore, it seems unlikely that 

a univariate labour productivity growth time series will be rich enough to 
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describe the variation in the data. From the data and the analysis performed, it 

seems plausible to conclude that the crisis has changed the underlying process 

determining the labour productivity growth rate (at least in the short-term) and 

thus, forecasts based on such models are rather unreliable. Finally, it is important 

to note that a reliable and effective model which predicts the labour productivity 

growth in Norway through employing relevant time series is subject to future 

research. 

 

 

APPENDIX 
 

 

Appendix A 

Labour productivity growth time series plot in some major industrial 

countries, 1971-2011 

 

 
 Source: Data is extracted from OECD statistics <http:// stats.oecd.org/> accessed 18 

November 2013. 
 

Appendix B 

Labour productivity annual growth rate in Norway from 1971 till 2011: 

 

1971 1972 1973  1974 1975 1976 1977 197

8 

1979 1980 1981 1982    

 5.8 5.8 4.5   3.6 4.2 5.5   3.5   4.3 4.2 2.0 0.9    0.8        

1983 1984 1985  1986 1987 1988 1989 1990 1991 1992 1993  1994    

 4.3 5.3 2.9    1.0   1.5 0.2   4.1  3.3  4.2 3.0  2.3 3.07 

1995 1996 1997  1998 1999 2000 2001 2002 2003 2004 2005  2006 

3.2 3.3 2.7 0.2  1.2 3.9 3.4  2.2 3.1 2.0 1.1  -0.9 

2007 2008 2009 2010 2011        

-1.9 -3.4 0.4    0.4 -0.5        
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Appendix C 

The result of the Augmented Dickey Fuller test (ADF) for labour 

productivity growth time series: 

 

Augmented Dickey-Fuller Test 

data:  Labourproduc11 

Dickey-Fuller = -2.5419, Lag order = 3, p-value = 0.3604 

alternative hypothesis: stationary 

Conclusion: The p-value of the ADF test (0.3604) is greater than 0.05. Therefore, 

the null hypothesis of a unit root in labour productivity growth time series is 

failed to reject against the alternative that the series is stationary at the 5% 

significance level. 

 

The result of the KPSS test for labour productivity growth time series: 

KPSS Test for level stationarity 

data:  Labourproduc11 

KPSS Level = 1.0548, Truncation lag parameter = 1, p-value = 0.01 

Warning message: 

In kpss.test(Labourproduc11, null = "Level") : 

 p-value smaller than printed p-value 

Conclusion:  The p-value of the KPSS test is smaller than 0.05. Therefore, the 

null hypothesis that labour productivity growth time series is level stationary is 

rejected in favour of alternative hypothesis that it is a non-stationary unit-root 

process at the 5% significance level. 

 

The result of the Augmented Dickey Fuller test (ADF) for the differenced 

labour productivity growth time series: 

 Augmented Dickey-Fuller Test 

data:  diff(Labourproduc11) 

Dickey-Fuller = -5.0319, Lag order = 3, p-value = 0.01 

alternative hypothesis: stationary 

Warning message: 

In adf.test(diff(Labourproduc11)) : p-value smaller than printed p-value 

Conclusion: The p-value of the ADF test is smaller than 0.05. Therefore, the null 

hypothesis of a unit root in the differenced labour productivity growth time series 

is rejected in favour of the alternative that the series is stationary at the 5% 

significance level. 

 

The result of the KPSS test for the differenced labour productivity growth 

time series: 

 

KPSS Test for level stationarity 

data:  diff(Labourproduc11) 

KPSS Level = 0.0291, Truncation lag parameter = 1, p-value = 0.1 

Warning message: 
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In kpss.test(diff(Labourproduc11)) : p-value greater than printed p-value 

Conclusion: The p-value of the KPSS test is greater than 0.05. Then, the null 

hypothesis that the differenced labour productivity growth time series is level 

stationary is failed to reject against the alternative hypothesis that it is a 

nonstationary unit-root process at the 5% significance level. 

 

Appendix D 

Autocorrelations for the differenced labour productivity growth time series 

by lag 

        

      0 1 2     3 4   5 6 7 8     9  10 

1.000 -0.086 -0.231 -0.223 -0.103 0.070 0.152 -0.014 0.002 -0.070 0.015 

    11  12  13 14  15  16   17  18 19   20  

  0.066 -0.049 0.114 -0.112 -0.112 0.060 -0.039 0.062 -0.100 0.160  

 

Partial Autocorrelations for the differenced labour productivity growth 

time series by lag 

 

   1 2 3     4 5 6   7     8 9 10  11 

-0.086 -0.240 -0.287 -0.268 -0.168 -0.054 -0.133 -0.040 -0.086 -0.010 0.044 

  12 13  14     15    16 17 18      19     20   

-0.051 0.169 -0.046 -0.076 0.014 -0.146 -0.053 -0.290    0.08   

 

Appendix E 

Observed values of Norwegian labour productivity growth time series 

between 1971-2011 versus its fitted values in the same period using the 

selected ARIMA model (ARIMA (1, 1, 1) with no constant) 
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Appendix F 

The forecast for labour productivity growth time series in Norway for the 

period 2012-2021 using ARIMA (0, 1, 0) with no constant 

 

 
 Note: The forecasts for the period 2012-2021 are plotted as a blue line, the 80% 

forecast interval as an orange shaded area, and the 95% forecast interval as a yellow shaded 

area. 
 

Appendix G 

a) A 20-year forecast (2012-2031) for Norwegian labour productivity 

growth time series using the selected ARIMA model (ARIMA (1, 1, 1) with 

no constant) 

 

 
 Note: The forecasts for the period 2012-2031 are plotted as a blue line, the 80% 

forecast interval as an orange shaded area, and the 95% forecast interval as a yellow shaded 

area. 
 

b) A 30-year forecast (2012-2041) for Norwegian labour productivity 

growth time series using the selected ARIMA model (ARIMA (1, 1, 1) with 

no constant) 
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 Note: The forecasts for the period 2012-2041 are plotted as a blue line, the 80% 

forecast interval as an orange shaded area, and the 95% forecast interval as a yellow shaded 

area. 


